

Welcome to Waldo’s documentation!

Waldo tells what everyone already knows.

We have a manuscript in preparation. If you use this in a publication, please
let us know so we can (to the best of our knowledge), give you the right
citation.

You can access the waldo webservice at
http://murphylab.web.cmu.edu/services/waldo/home

Example

	::

	import waldo.uniprot.retrieve
from waldo.go import id_to_term

name = ‘ACTB_HUMAN’
gos = waldo.uniprot.retrieve.retrieve_go_annotations(name)

	for g in gos:

	print id_to_term(g)

This prints out:

axon
ortical cytoskeleton
ytoskeleton
ytosol
xtracellular vesicular exosome
LL5-L complex
uA4 histone acetyltransferase complex
ostsynaptic density
ibonucleoprotein complex

Contents

	Installing Waldo
	Getting the code

	Downloading and building the database

	Waldo Tutorial
	Other Databases

	Identifier Translation

	Waldo Architecture
	Install & Update

	Local Database Structure
	LOCATE

	Uniprot

	MGI

	Full API Documentation

Indices and tables

	Index

	Module Index

	Search Page

Installing Waldo

Getting the code

If you use pip or easy_install, you should be able to install waldo
with:

pip install waldo
easy_install waldo

If you prefer to install from source, you can get either `the released version
<>`__ or the bleeding edge [https://github.com/luispedro/waldo].

Once you download the code, you should be able to install it with:

python setup.py install

Dependencies

	python

	lxml

	sqlalchemy

	bottle

bottle is only needed if wish to run the web application (i.e., if you only
using the local programming API, then you can skip this step).

Under a debian or Ubuntu system, the following commands will install all needed
packages:

sudo apt-get install python-lxml
sudo apt-get install python-sqlalchemy
sudo apt-get install python-bottle

Downloading and building the database

update-waldo --user --unsafe --verbose

The --user flag installs the database just for this user (but does not
require super-user [root] permissions).

The --unsafe flag makes the process much faster. However, it also means
that if the process is interrupted, it will need to be started from scratch.

The --verbose flag, as expected, make the whole process more verbose.

Waldo Tutorial

We assume you have already installed waldo and its databases. We will show you
how to use it as a library.

Our task will be to find out more information about 3 mouse proteins, listed
using MGI (Mouse Genome Informatics) gene IDs:

	Actn1 [http://www.informatics.jax.org/marker/MGI:2137706]

	Cdc42 [http://www.informatics.jax.org/marker/MGI:106211]

	Fah [http://www.informatics.jax.org/marker/MGI:95482]

If we want to look up the GO locations within MGI, we could simply do:

import waldo.mgi
annotations = waldo.mgi.retrieve_go_annotations('Actn1')
print annotations

Prints out:

[u'GO:0000139',
 u'GO:0005622',
 u'GO:0005622',
 u'GO:0005623',
 u'GO:0005737',
 u'GO:0005737',
 u'GO:0005737',
 u'GO:0005856',
 u'GO:0005886',
 u'GO:0005886',
 u'GO:0016020',
 u'GO:0030141',
 u'GO:0030175',
 u'GO:0030496',
 u'GO:0042995',
 u'GO:0043005',
 u'GO:0043025',
 u'GO:0045177',
 u'GO:0051233',
 u'GO:0071944',
 u'GO:0072686']

These are Gene Ontology IDs, but they are hard to understand, we can get the
English version with waldo.go.id_to_term:

from waldo.go import id_to_term
print map(id_to_term, annotations)

Now, you see:

[u'Golgi membrane',
 u'intracellular',
 u'intracellular',
 u'cell',
 u'cytoplasm',
 u'cytoplasm',
 u'cytoplasm',
 u'cytoskeleton',
 u'plasma membrane',
 u'plasma membrane',
 u'membrane',
 u'secretory granule',
 u'filopodium',
 u'midbody',
 u'cell projection',
 u'neuron projection',
 u'neuronal cell body',
 u'apical part of cell',
 u'spindle midzone',
 u'cell periphery',
 u'mitotic spindle']

To get information on all the genes we had above, we can now just use standard
Python constructs:

genes = ['Actn1', 'Cdc42', 'Fah']
annotations = {}
for g in genes:
 annotations[g] = waldo.mgi.retrieve_go_annotations(g)

Other Databases

First we need to deal with identifiers. Proteins can be identified in many
ways. Mapping identifiers is itself often a big problem.

Waldo uses ENSEMBL identifiers as the common identifiers. It knows how to
convert identifiers from the other databases to Ensembl and back. Above, we
listed MGI symbols, so they worked with MGI look up. Now, we will convert them
to see what Uniprot [http://www.uniprot.org/] has to say.

First, we get the ensembl gene ID:

from waldo import translate
for g in genes:
 print translate(g, 'mgi:symbol', 'ensembl:gene_id')

This prints out (see the identifier section to learn
about the identifiers that Waldo knows about):

ENSMUSG00000015143
ENSMUSG00000006699
ENSMUSG00000030630

To get a uniprot name, we need two steps:

for g in genes:
 e = translate(g, 'mgi:symbol', 'ensembl:gene_id')
 uname = translate(e, 'ensembl:gene_id', 'uniprot:name')
 print uname

To get:

ACTN1_MOUSE
CDC42_MOUSE
FAAA_MOUSE

We now just look these up using the Uniprot module:

import waldo.uniprot

for g in genes:
 e = translate(g, 'mgi:symbol', 'ensembl:gene_id')
 uname = translate(e, 'ensembl:gene_id', 'uniprot:name')
 print waldo.uniprot.retrieve_go_annotations(uname)

Voilà!

Identifier Translation

One of waldo’s features is the ability to translate between different gene
identifiers.

It knows about the following identifier types:

	embl:cds EMBL CDS

	ensembl:peptide_id ENSEMBL Peptide ID

	ensembl:gene_id ENSEMBL Gene ID

	ensembl:transcript_id ENSEMBL Transcript ID

	mgi:id MGI ID

	mgi:symbol MGI Symbol

	mgi:name MGI Name

	refseq:accession RefSeq Accession

	uniprot:name Uniprot Name

	uniprot:accession Uniprot Accession

	locate:id Locate ID

	hpa:id Human Protein Atlas ID

The strings like ensembl:gene_id are the ones used in the code.

Here is a simple example of how to translate Uniprot accessions to Uniprot
names:

from waldo import translate
accessions = [
 'P60709',
 'P07437',
 'Q9BQE3',
 'Q9NY65',
]
for a in accessions:
 n = translate(a, 'uniprot:accession', 'uniprot:name')
 print('{} -> {}'.format(a, n))

Prints out:

P60709 -> ACTB_HUMAN
P07437 -> TBB5_HUMAN
Q9BQE3 -> TBA1C_HUMAN
Q9NY65 -> TBA8_HUMAN

Waldo Architecture

Each datasource (Uniprot, MGI, LOCATE) has its own independent module, but each
of the datasource modules adheres to a common interface.

Each module should:
-load information from its corresponding flat files into the local relational database
-perform translations from the datasource-specific protein identifiers to the global
ensembl gene IDs, enabling easy searching across all datasources
-be able to retrieve all GO terms corresponding to a given ensembl gene ID /
datasource-specific identifier

The web front-end can then call these methods for all the available datasources
when a query is issued.

Datasource files are stored in the “data/” folder, and are referenced independently
in each module. As the number of modules grows, this may be redesigned. However,
these are only needed when the data is loaded into the local relational database,
which should happen very infrequently.

Install & Update

In order to periodically update the datasources, new versions of the files need
to be pulled down from the servers. Executing the following command will perform
this task:

./bin/update-waldo --user --unsafe --verbose

Note: this might take a while, e.g. Uniprot takes about an hour at the time of writing.

Local Database Structure

For every data source (LOCATE, Uniprot, MGI, etc), there were decisions made
regarding what data to extract and store locally and what information was left
in the downloaded files (datasources), possibly for future use. This is an
explanation of the rationale.

LOCATE

LOCATE contains significant information in its datasources.
Here is a brief list of the information available:

-Protein (organism, name, function, sequence, location)
-Transcript (isoforms)
-Experimental data (images, colocalization images, location)
-External database annotations (locations from external sources)
-Literature evidence (research citations, location)
-Subcellular location predictions (location, method of prediction)
-Motifs (name, position, type, status)
-Memos (memos, methods, scores)
-External References (identifiers into external data sources)
-Topology (methods).

Of these categories, we currently only thoroughly capture information pertaining
to the protein, transcript, external annotations, literature, predictions, and
external references, as these are the only topics that are most directly associated
with subcellular location.

The experimental images, topology, and motifs could be very useful for future work
involving subcellular location prediction.

Uniprot

Currently the information we capture from Uniprot involves accession numbers (which
map directly to Uniprot entries), GO annotations, comments (particularly pertaining
to subcellular location), and direct references. There is a significant amount of
other information, particularly in the form of external database references
that is not being used (as only those directly referencing Ensembl IDs are currently
used). This could be useful later to cross-reference against other data authorities.

MGI

MGI’s gene annotations consists of a tab-delimited file where unique entry
identifiers may be repeated throughout the datasource in order to express a
one-to-many relationship with the other values of the additional columns. The
only information from the gene annotations file that is currently used is the
unique MGI identifier, the ensembl ID (cross-referenced from MGI’s MRK_Ensembl
file), and the GO location terms.

Much of MGI’s data is split up across many different downloadable files, as opposed
to huge single files similar to the other data sources. Literature evidence, for
example, is also not currently used (as the PubMed IDs for each MGI entry are in
yet a third file), but there are plans to incorporate this information very soon.

Full API Documentation

WALDO : WHERE PROTEINS ARE

This is a Python library to collect information about proteins from online
databases (Uniprot, MGI, ...) and expose it as an easy to use Python library.

	
waldo.translate(name, input_namespace, output_namespace, session=None)

	name = translate(name, input_namespace, output_namespace, session={backend.create_session()})

Translate from one namespace to another.

	name : str

	input name

	input_namespace : str

	namespace to translate from (must be a known namespace)

	output_namespace : str

	namespace to translate to (must be a known namespace)

	session : SQLAlchemy sesion object

	SQLAlchemy session to use (default: call backend.create_session())

	name : str or None

	result of translation or None if not found.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 waldo	

 	
 	
 waldo.go	

Index

 T
 | W

T

 	
 	translate() (in module waldo)

W

 	
 	waldo (module)

 	
 	waldo.go (module)

Database Querying API

Uniprot.retrieve

To translate Ensembl Ids into Uniprot names, two methods are provided:

	From Ensembl gene id:

	uniprot_name = from_ensembl_gene_id(ensembl_gene_id, sqlalchemy_session)

	From Ensembl peptide id:

	uniprot_peptide_name = from_ensembl_peptide_id(ensemble_peptide_id, sqlalchemy_session)

To retrieve a list of GO Id strings (of the form “GO:00...”) using the Uniprot
name:

go_ids = retrieve_go_annotations(name, sqlalchemy_session)

To retrieve a Uniprot database entry using the Uniprot name:

entry = retrieve_entry(name, sqlalchemy_session)

A Uniprot entry contains the human readable protein name, GO Annotations,
organisms, accessions, references, comments, and the protein’s sequence.

Go Annotations are often accompanied by two to three letter evidence codes, to
determine the meaning of an evidence code, a method is provided to convert the
evidence codes given in entry.go_annotations.evidence_code to a convenient
description.

	::

	description = translate_evidence_code(evidence_code)

To retrieve a paper’s abstract given its PubMed id or DOI code, two methods are
provided:

	For PubMed Ids

	abstract = retrieve_pubmed_abstract(pubmed_id)

	For DOI codes

	abstract = retrieve_doi_abstract(doi_code)

Note that retrieve_doi_abstract simply looks up the PubMed Id associated
with the DOI code, and so will fail if the paper does not have one.

Additionally, retrieve_name_matches is provided to find Uniprot entries by
searching a term and finding Uniprot names that contain the term or similar terms.

	::

	entries = retrieve_name_matches(term, sqlalchemy_session)

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Waldo's documentation!

 		Installing Waldo

 		Getting the code

 		Dependencies

 		Downloading and building the database

 		Waldo Tutorial

 		Other Databases

 		Identifier Translation

 		Waldo Architecture

 		Install & Update

 		Local Database Structure

 		LOCATE

 		Uniprot

 		MGI

 		Full API Documentation

_static/up-pressed.png

_static/down.png

_static/up.png

